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The Boltzmann equation describing electron flow in semiconductor devices is con-
sidered. The collision operator models the scattering processes between free electrons
and phonons in thermal equilibrium. The doping profile and the self-consistent elec-
tric field are related by the Poisson equation. The coupled system is solved by using a
simple numerical scheme based on finite differences. Hydrodynamical variables are
obtained by integrating the distribution function. Numerical results are shown for a
one-dimensionaln+ − n− n+ silicon diode. c© 2001 Elsevier Science
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1. INTRODUCTION

The Boltzmann transport equation (BTE) describes electron transport in semiconductor
devices. Solving it numerically is not an easy task, because the BTE is an integro–differential
equation with six dimensions in the phase space and one in time. Actually, one of the
most popular methods of modeling charge transport in such devices is the Monte Carlo
method [4, 6, 10]. However, resolution of strong transients and an accurate description
of the tail of the distribution function require an intractable number of particles to obtain
good results. Moreover, it is also difficult to examine unsteady systems with Monte Carlo
methods.

An alternative approach to the Monte Carlo method was proposed by Fatemi and Odeh
[5]. They analyzed the exact BTE and developed a finite-difference scheme for solving the
Boltzmann–Poisson system. Their interesting paper shows that a finite-difference scheme
for solving this system is viable. This is possible also because the collision operator is
simpler than the classical Boltzmann operator for perfect rarefied gas [3], where the five-
dimensional manifold of the integrals suggests stochastic algorithms.
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In this paper we follow the main idea of [5], but a new numerical algorithm is proposed. In
order to make clear the difference between the two schemes, we consider it useful to recall
briefly some features of the Fatemi and Odeh [5] scheme. They used a spherical coordinate
system for the wave-vectork and an upwind scheme to discretize the differential terms in the
BTE. The spherical coordinates simplify the treatment of the collision operator but introduce
a singularity in the free streaming operator. Since the transformed BTE is not defined at
k= 0, in order to avoid overflow in the numerical calculations a small neighborhood of the
origin is removed from thek domain. This requires an additional non-physical boundary
condition on the surface of this small region. In any case, when spherical coordinates are
used, the origin of the Cartesian system is mapped into a rectangle and a new boundary
condition is required. Moreover, in order to have a boundedk domain, a parameter kmax

is suitably set and only the region|k| ≤ kmax is considered. This new boundary requires
again an additional condition, which must take into account the behavior of the distribution
function for large values of|k| and the mass conservation law. Fatemi and Odeh [5] achieved
this by also defining a modified collision operator directly in the discretized equations.
Another small modification was performed on the collision operator of the BTE since it
contains the Dirac distribution. In order to regularize this operator, a smooth function was
used to replace theδ function. Consequently, the integral operator becomes compact and
the mathematical and numerical treatment is simpler. Trouble arises because of the use of
a smooth continuous function having compact support instead of theδ function. In fact, a
small compact support gives a good approximation of theδ function but requires many grid
points to ensure a good numerical discretization. On the other hand, a large support gives
a dual situation. Therefore a careful but not trivial compromise was needed.

We develop a new scheme still based on spherical coordinates for the wave vector and
finite differences to discretize partial and integral operators. The use of a new unknown,
instead of the distribution function, allows us to automatically eliminate the singularity in
the free streaming operator and to give the exact boundary condition corresponding to the
origin of thek space.

We use a different approach for the treatment of the spatial coordinatex and the wave-
vectork. In fact we use the box method to discretize the BTE in thek space, and we use the
upwind method in thex space. This choice arises from physical considerations and will be
clearly explained later.

Before performing the numerical discretization, we introduce an upper bound for|k| in
the kernel of the collision operator of the exact BTE. This modification still guarantees mass
conservation. Moreover, we keep the Dirac distribution inside the collision operator.

The plan of the paper is as follows. In Section 2 we describe the main features of the model
equations. The energy band structure is modeled assuming the Kane model instead of the
parabolic band approximation used by Fatemi and Odeh [5]. In Section 3 the dimensionless
equations are derived. In Section 4 we describe our numerical scheme. Finally, in Section 5
we show the results of a test problem and in Section 6 draw conclusions.

2. BASIC EQUATIONS

We consider an electron gas, which interacts with a bath of phonons assumed to be in
thermal equilibrium. In this case the Boltzmann equation is [6, 9]

∂ f

∂t
+ 1

h-
∇kε · ∇x f − e

h-
E · ∇k f = Q( f ). (1)
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The unknown f is the electron distribution function, which depends on timet , space
coordinatesx, and wave-vectork. The parametersh- ande are the Planck constant divided
by 2π and the positive electric charge, respectively. The symbols∇x and∇k stand for the
gradient with respect to the variablesx and k, respectively. The particle energyε is an
assigned nonnegative continuous function. If the Kane model is assumed, then

ε(k) = 1

1+
√

1+ 2 α̃
m∗ h

-2 |k|2
h-2

m∗
|k|2, (2)

wherem∗ is the effective mass and ˜α is the nonparabolicity factor. The widely used parabolic
approximation is obtained from Eq. (2) by setting ˜α = 0. We adopt Eq. (2) because it
gives a more realistic description of the electron band structure than the parabolic appro-
ximation.

In Eq. (1) the electric fieldE satisfies the Poisson equation

1V = e

ε
[n(t, x)− ND(x)], (3)

E = −∇xV, (4)

whereε is the permittivity,n(t, x) = ∫<3 f (t, x, k) dk is the electron density,ND(x) is the
doping, andV is the electric potential. Equations (1), (3), and (4) give the Boltzmann–
Poisson system.

We follow a semiclassical approach for the collision termQ( f ), so that, in the low-density
regime, it is

Q( f )(t, x, k) =
∫
R3

[S(k′, k) f (t, x, k′)− S(k, k′) f (t, x, k)] dk′. (5)

The kernelS, which takes into account the scattering processes between electrons and
phonons, is defined by

S(k, k′) = K0(k, k′)δ(ε(k′)− ε(k))+ K (k, k′)

× [(nq + 1)δ(ε(k′)− ε(k)+ h-ω)+ nqδ(ε(k′)− ε(k)− h-ω)]. (6)

The constantnq is the occupation number of phonons and is given by

nq =
[

exp

(
h-ω

kBTL

)
− 1

]−1

,

whereω is the constant phonon frequency,kB is the Boltzmann constant, andTL is the lattice
temperature. The symbolδ indicates the usual Dirac distribution. This is composed with
the functionε(k). The mathematical meaning of the new distribution functionδ(ε(k′)−
ε(k)± h-ω) is analyzed in [8].

The domain of the wave-vector is theR3 space. In order to eliminate this difficulty in
the numerical calculations, one usually replacesR3 with a bounded domain. Fix a positive
integerN̄, and the new domain of the wave-vector is

D = {k ∈ R3 : ε(k) ≤ N̄h-ω}.
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Following [7] we modifyQ( f )by multiplying the kernels—K0 andK—by the step function

C(ε(k), ε(k′)) =
{

1 if max{ε, ε′} < N̄h-ω
0 otherwise.

(7)

It is worthwhile to point out that it is possible, by using standard techniques, to prove that∫
D

Q( f )(t, x, k) dk = 0,

for every admissiblef . This implies the mass conservation, assuming the boundary condi-
tion

f (t, x, k) = 0 (8)

for every(t, x, k) such thatε(k) = N̄h-ω.
The cut in the kernels means physically that an electron has zero probability of colliding

in the following two cases:

• The electron, before the collision, has an energy less thanN̄h-ω, but after has an energy
equal to or greater than̄Nh-ω.
• The electron, before the collision, has an energy greater than or equal toN̄h-w.

This means that the number of all the electrons having energy less thanN̄h-w does not
change as an effect of collisions. The boundary condition Eq. (8) guarantees that the energy
of a particle cannot exceed the thresholdN̄h-ω due to the electric field.

3. DIMENSIONLESS EQUATIONS

It is useful to introduce dimensionless equations. Now we use the coordinate transfor-
mation

k =
√

2

√
m∗kBTL

h-
√
w
√

1+ αKw(
√

1− µ2 cosφ,
√

1− µ2 sinφ,µ), (9)

whereαK = kBTL α̃ andw is a dimensionless energy.
Equation (9) is equivalent to the spherical coordinate transformation when the parabolic

band approximation is used. The main advantage of the new coordinates is the easy treatment
of theδ function. In fact, it is simple to check that

ε = kBTLw,

so that the integrals with respect tow in the collision operator can be solved exactly by
using the properties of theδ function.

The Jacobian of the transformationk→ (w, φ, µ) is

1

2

(
2m∗kBTL

h-2

)3/2√
w(1+ αKw)(1+ 2αKw).
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Let K∗ be a dimensional constant parameter of thesame orderas the kernelK . Now, we
define dimensionless quantities. In order to simplify the notation in the rest of the paper,
here we put a tilde over the dimensional variables. Let

α = h-ω

kBTL
, a = nq + 1

nq
= eα,

K̃ (k, k′) = K∗K (ξ, ξ′), K̃0(k, k′) = K∗nq K0(ξ, ξ
′),

t∗ =
[
4
√

2π
m∗
√

m∗
h-3

√
kBTLnq K∗

]−1

, l∗ =
√

kBTL

m∗
t∗,

t̃ = t∗ t, x̃ =
√

2l∗x,

ÑD(x̃) =
(√

2m∗kBTL

h-

)3

ND(x), cp = 2
√

2

ε
e2l 2
∗

m∗
√

m∗

h-3

√
kBTL ,

E(t, x) =
√

2
kBTL

el∗
(E1(t̃, x̃), E2(t̃, x̃), E(t̃, x̃)), V(t, x) = 2

kBTL

e
9(t̃, x̃),

whereξ = (w, φ, µ). Herez is the spatial coordinate andt is the dimensionless time.
In the following we will see that an appropriate choice ofK∗ makest∗ and l∗ of the

same order of magnitude as the characteristic time scale and length of the semiconductor,
respectively.

In terms of the new variables, the unknownf is denoted byF . Since we are looking
for a solution of the BTE, which depends only on one spatial coordinate, we simply write
F(t, z, w,µ). It is obvious that the electric potential depends only ont andz. The angular
coordinateφ disappears, due to the symmetry of the problem.

Let

8(t, z, w,µ) = s(w)F(t, z, w,µ). (10)

The function8 will be the new unknown. Since the functions(w) is proportional to the
Jacobian of the coordinate transformation, we can evaluate moments of the distribution
function, as density or momentum, using8 directly. In fact, as an example, the density of
the gas is given, apart from a dimensional factor, by

1

2

∫ 2π

0
dφ
∫ +∞

0
dw
∫ 1

−1
dµ8(t, z, w,µ).

We are interested in solving the Boltzmann–Poisson system in the case of a silicon device.
The appropriate kernels̃K and K̃ 0 are then constant (see Appendix A for the numerical
data). Now, we can chooseK∗ such that

K̃ = 1 and K̃ 0 = β ' 5.986.

Thent∗ ' 3.6 ps andl∗ ' 0.43µm.
It follows that the collisional operator becomes

Q( f )(k) = 1

t∗

{
1

2

∫ 1

−1
[β8(t, z, w,µ′)+ a8(t, z, w + α,µ′)+8(t, z, w − α,µ′)] dµ′

− 1

s(w)
[βs(w)+ as(w − α)+ s(w + α)]8(t, z, w,µ)

}
; (11)
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the forcing term is

−e

h-
E · ∇k f = −E

t∗

[
2µ
√
w(1+ αKw)

(1+ 2αKw)

∂

∂w

(
8

s(w)

)
+ (1− µ2)

w(1+ αKw)(1+ 2αKw)

∂8

∂µ

]
;

and, finally, the convective term is

1

h-
∂ε

∂k3
· ∂ f

∂x3
= 1

t∗

µ

(1+ 2αKw)2

∂8

∂z
,

wherek3 is the third component ofk, andx3 is the third component ofx. The Poisson
equation is now

∂29

∂z2
= −cp

[
ND(z)− π

∫ +∞
0

dw
∫ 1

−1
dµ 8(t, z, w,µ)

]
.

The domains of the variables are

z ∈ [0, L], w ∈ [0, wmax], µ ∈ [−1, 1],

whereL is the dimensionless length of the device andwmax= N̄h-ω is the maximum value
of the energy, which is adjusted in the numerical experiments such that

F(t, z, w,µ) ' 0 forw ≥ wmax, for everyt, z, µ.

Of course we modify Eq. (11) taking into account the cut described previously.

4. NUMERICAL SCHEME

We perform, as the first step, the discretization only inw andµ. Let1w and1µ denote
the constant step sizes. The presence of theδ function requires us to assume thatα/1w is
an integer in order to treat the shifted terms8(t, z, w±α,µ) correctly. The grid points in
thew − µ space are

wi = i ·1w, µ j = −1+ j ·1µ, i, j = 0, 1, 2, . . . .

For each interior point(wi , µ j ) we consider the rectangleRi j = [wi−1, wi+1] × [µ j−1,

µ j+1]. Now, we multiply both sides of the BTE bys(w) and integrate with respect tow and
µ on Ri j . An easy computation shows that the following equation is obtained.

∂

∂t

∫∫
Ri j

8(t, z, w,µ)dw dµ+
∫∫

Ri j

√
w(1+ αKw)

(1+ 2αKw)
µ
∂8

∂z
dw dµ

− E(t, z)

{∫ µ j+1

µ j−1

dµ

[
2µ

√
w(1+ αKw)

(1+ 2αKw)
8(t, z, w,µ)

]wi+1

wi−1

+
∫ wi+1

wi−1

dw

[
1− µ2

√
w(1+ αKw)

8(t, z, w,µ)

]µ j+1

µ j−1

}

= 1µ
∫ wi+1

wi−1

dw
∫ 1

−1
dµ[β8(t, z, w,µ)+ a8(t, z, w + α,µ)+ 8(t, z, w − α,µ)]s(w)

−
∫∫

Ri j

[βs(w)+ as(w − α)+ s(w + α)]8(t, z, w,µ) dw dµ. (12)
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The cut in the collision operator simply implies that in Eq. (12) we must defines(w) = 0
if w /∈ (0, wmax) and set8(t, z, w,µ) = 0 if w ≥ wmax for every(t, z, µ). We notice that
integration by parts in the forcing term gives one-dimensional integrals. We remark that
Eq. (12) contains only a term, which is singular forw = 0, but it is integrable.

This approach is usually called a box scheme. The integrals in Eq. (12) are numerically
approximated by using quadrature formulas. For the first term in Eq. (12) one can simply
use ∫∫

Ri j

8(t, z, w,µ)dw dµ ' 41w1µ8(t, z, wi , µ j ).

For the other integrals the Simpson rule is applied, except for the integral∫ 21w

0

[
1− µ2

√
w(1+ αKw)

8(t, z, w,µ)

]µ j+1

µ j−1

dw,

where a parabolic interpolation for the function8(t, z, w,µ)/
√

1+ αKw is used because
of the singularity.

The values of8 on the boundary of thew − µ domain are determined as follows. We
have

8(t, z, 0, µ) = 0 for every(t, z, µ)

due to the definition of8 (Eq. (10)), and

8(t, z, wmax, µ) = 0 for every(t, z, µ)

due to the boundary condition Eq. (8).
The values of8 for µ = ±1 are easily obtained by the relations

8(t, z, w,1) = 8(t, z, w,1−1µ)
8(t, z, w,−1) = 8(t, z, w,−1+1µ)

for every (t, z, w). We choose the same boundary conditions for the inflow and outflow of
electrons as in [5]; i.e.,

∂8

∂z
(t, 0, w,µ) = 0 if µ > 0,

∂8

∂z
(t, 1, w,µ) = 0 if µ < 0,

for everyt andw.
At this stage we have a large system of partial differential equations in (t, z). The nature

of the BTE would make the previous system hyperbolic, but we do not prove it. So classical
difference schemes for the advection equation can be applied. We use the upwind method,
as in [5]. We remark that, for each (i, j ), Eq. (12) gives an equation which contains nine
partial derivatives with respect toz, due to the two-dimensional Simpson rule.

The ordinary differential equations obtained after the spatial discretization are solved
using standard predictor–corrector schemes. Our numerical experiments suggest the use
of high order (four or five) formulas. The initial condition forf is a local Maxwellian
distribution (see Appendix A).

The Poisson equation is solved formally. The numerical scheme giving an approximation
of the solution is described in Appendix B. It differs from the standard scheme because
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in this way it is possible to use grid points not equally distributed. The solution of the
Poisson equation is performed at each step of the predictor–corrector iteration, resembling
a frozen-in-timeelectric field.

5. NUMERICAL RESULTS

We choose then+ − n− n+ silicon diode as a test problem. The doping densities and
the length of the regions are

ND(z) = 5 · 1017 cm−3 for 0≤ z≤ 0.3 (µm) and 0.7≤ z≤ 1 (µm)

ND(z) = 2 · 1015 cm−3 for 0.3≤ z≤ 0.7 (µm).

We used aVbias = 1V and the same constants as in [1].
For the discretization of the variablest, z, w,µ we used the following values. Forz we

have both equally and unequally spaced grid points. In the first case, a cell has a length of
L/Nz, whereL = 1 µm is the length of our device andNz is the number of cells of the
discretization. We usedNz = 512, 256, and 128. In the case of a grid not equally spaced we
haveNz = 180 but distributed in this way: 15 cells for each interval [0, 0.25] and [0.75, 1],
40 cells for [0.25, 0.35] and [0.65, 0.75], and 70 cells for [0.35, 0.65].

For the discretization ofw andµ we have1w = α/4 and1µ = 1/15. Finally, the
number of time-steps per picosecond varies from 300 to 560 depending on the minimum
value of the length of the cells.

We perform some numerical experiments to see the influence of thelengthof the junctions.
The simplest case but the most unrealistic one is to use the step function. The second case

FIG. 1. Doping density profile for the three cases. Fatemi and Odeh [5]: continuous line; Anileet al. [2]:
dashed line; step function: dot-dash line.



SOLVING BOLTZMANN–POISSON SYSTEM 657

FIG. 2. Velocity for t = 1 ps,Nz = 512, and three doping profiles: Fatemi and Odeh [5]: continuous line;
Anile et al. [2]: dashed line; step function: dot-dash line.

FIG. 3. Electric field fort = 1 ps,Nz = 512, and three doping profiles: Fatemi and Odeh [5]: continuous line;
Anile et al. [2]: dashed line; step function: dot-dash line.
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FIG. 4. Velocity for t = 1 ps andNz= 512: continuous line; 256: dot-dash line; 128: dashed line.

FIG. 5. Electric field fort = 1 ps andNz = 512: continuous line; 256: dot-dash line; 128: dashed line.
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FIG. 6. Velocity for t = 1 ps andNz = 512: continuous line; 180: triangles.

FIG. 7. Velocity for t = 5 ps,Nz = 512 for three doping profiles: Fatemi and Odeh [5]: continuous line; Anile
et al.: dashed line; step function: dot-dash line.
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FIG. 8. Electric field fort = 5 ps andNz = 512 for three doping profiles: Fatemi and Odeh [5]: continuous
line; Anile et al.: dashed line; step function: dot-dash line.

FIG. 9. Density fort = 5 ps andNz = 512.
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FIG. 10. Velocity for t = 5 ps andNz = 512: continuous line; 180: triangles.

FIG. 11. Momentum fort = 5 ps andNz = 512: continuous line; 180: triangles.



662 MAJORANA AND PIDATELLA

FIG. 12. Electric field fort = 5 ps andNz = 512.

FIG. 13. Electric potential fort = 5 ps andNz = 512.
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FIG. 14. Distribution function fort = 5 ps atε= 2 h-ω.

we considered is a doping profile regularized according to the function [2]

ND(0)− d0

(
tanh

z− z1

s
− tanh

z− z2

s

)
,

where d0 = [ND(0)− ND(0.5)]/2, z1 = 0.3 µm, z2 = 0.7 µm, and the parameters=
0.01µm. The third case is that of Fatemi and Odeh [5], where the profile is regularized
with a seven-degree polynomial. Figure 1 shows three different doping profiles using step
function, hyperbolic function, and piecewise polynomial.

The units used in the figures are the following: length inµm, velocity in 105 m s−1,
electric field in V m−1, electric potential in kV, density in cm−3, and energy inh-ω. In
Figs. 2 and 3 we see the effect of the three different doping profiles for velocity and

FIG. 15. Distribution function fort = 5 ps atz= 0.2µm.
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FIG. 16. Distribution function fort = 5 ps atz= 0.3µm.

electric field in the transient (we choset = 1 ps). We notice that the step function gives
irregular profiles, while the other profiles give more regular results in the other cases. In
Figs. 4 and 5 the influence of the number of cells is analyzed. We see that the nonphysical
behavior near the first junction is numerical and it goes away with a finer discretization.
Figure 6 suggests that it is possible to optimize the code using an irregular mesh with
more points near the junctions but fewer points in the regular regions. Figures 7–17 refer
to the numerical stationary case (t = 5 ps). Figures 7 and 8 show that the behavior is the
same as in the transient, giving irregularities with the use of a step function. Figures 9–13
show density, velocity, momentum, electric field, and potential in the stationary case. In

FIG. 17. Distribution function fort = 5 ps atz= 0.5µm.
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Figs. 10 and 11 we plot results with a regular (Nz = 512) and an irregular (Nz = 180)
mesh, showing nearly no difference between the two discretizations. In the other cases,
the two discretizations give the same results. We notice that the velocity, which is greater
than the saturation velocity in the transient (Fig. 6), has a lower value in the stationary case
(Fig. 10). Momentum is regular (Fig. 11), although there is a small residual error near the
junctions.

To see the behavior of the distribution function8, we plot it for a fixed energy (ε = 2h-ω)
(Fig. 14) and for three fixedz: Fig. 15 atz= 0.2 µm, Fig. 16 atz= 0.3 µm, and Fig. 17 at
z= 0.5 µm. We notice that, in all the cases and even in the junctions, the function maintains
a regular shape. The use of the box method allowed us to adopt high order formulas, like
Simpson’s rule, to solve integrals. This means that we can use very few points inw andµ.
Moreover, we were able to obtain regular solutions even with nonsmooth profiles in doping,
such as the step function.

6. CONCLUDING REMARKS

One advantage of the scheme used to solve the BTE is that it is possible to consider
a collisional operator more complex than (5). We show some possible cases. In order to
make our arguments clear, we recall that the finite-difference approximation to the BTE is
achieved in two steps. The first concerns thek variables and consists in integrating Eq. (1),
after a change of variables, over a small domain ofk space (see Eq. (12)). In terms of
dimensional variables these domains are

Äi j = {k ∈ R3 :wi−1 ≤ w ≤ wi+1, µ j−1 ≤ µ ≤ µ j+1, 0≤ φ ≤ 2π},

wherew,µ, φ are related tok by Eq. (9). Using the original dimensional variablesk, we
obtain the equation∫

Äi j

[
∂ f

∂t
+ 1

h-
∇kε · ∇x f − e

h-
E · ∇k f

]
dk =

∫
Äi j

Q( f ) dk. (13)

This equation, after the transformation (9), gives Eq. (12). Let us analyze the right-hand side

of Eq. (13). If χi j (k) denotes the characteristic function of the setÄi j , then
we have∫
Äi j

Q( f )(t, x, k) dk =
∫
R3

Q( f )(t, x, k)χi j (k) dk

=
∫
R3

[ ∫
R3

S(k′, k) f (t, x, k′) dk′
]
χi j (k) dk−

∫
R3

[ ∫
R3

S(k, k′) f (t, x, k) dk′
]
χi j (k) dk

=
∫
R3

[ ∫
R3

S(k′, k)χi j (k) dk
]

f (t, x, k′) dk′ −
∫
R3

[ ∫
R3

S(k, k′) dk′
]

f (t, x, k)χi j (k) dk

=
∫
R3

[ ∫
Äi j

S(k′, k) dk
]

f (t, x, k′) dk′ −
∫
Äi j

[ ∫
R3

S(k, k′) dk′
]

f (t, x, k) dk.

Now, it is clear that we can evaluate the integrals∫
Äi j

S(k, k′) dk′ and
∫
R3

S(k, k′) dk′, (14)
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independently of the unknownf . Of course, we must calculate the integrals in Eq. (14)
only for values ofk which correspond to grid points in (w,µ)-space. Therefore, scat-
tering kernels more complex than (6) can be considered. For example, the transition
probability of an electron from statek to statek′ can include all the possible phonon
states; i.e., the phonon frequency does not have to be constant. Integrals (14) can be app-
roximated numerically, but in this case, it is necessary to evaluate the second integral, con-
sidering the whole spaceR3 as the union ofÄi j domains (i and j odd), and then using
the same formulas as in the first integral (14). This guarantees that the mass conservation
holds.

Another problem concerns the possibility of including the Pauli exclusion principle in the
collision operator. This is important for high-density electron gas. In the case of constant
phonon frequency, the inclusion of a (1− f ) term intoQ( f ) gives a nonlinear collisional
integral instead of Eq. (11), but the numerical scheme is able to take this new situation into
account. It is simple to imagine the new form of Eq. (12). The possibility of also including
complex scattering kernels is not obvious, and it is evident that the arguments given above
in this section are not applicable.

It is also reasonable that it is not possible to include the full collisional operator describing
the electron–electron interaction, because of the five-dimensional integrals. The treatment
of this operator, in fact, usually requires Monte Carlo algorithms instead of finite difference
formulas. A possible way to overcome this difficulty is to consider a BGK collisional
operator (relaxation model) (see, e.g., [3]) to describe carrier–carrier scattering. Toward this
aim it is necessary to choose a suitable relaxation time (usually depending on the electron
energy).

The second step of the finite-difference approximation concerns thex-variable. This
point is important for the simulation of 2D devices. The dimension of the problem in-
creases by one, since we need only an additional spatial coordinate. Our experiments for
a 1D diode indicate that a reasonable small number of grid points in (w,µ)-space are
needed. Then, simulations of 2D problems are related to a realistic spatial grid that is not
too fine.

We want to point out that this work is a first attempt at a robust and efficient code to solve
the BTE. Our future work will consider two different issues, again in the framework of 1D
simulations. One is that of improving the numerical accuracy, for example, by using a higher
order scheme for the discretization of spatial derivatives. Another issue is the improvement
of the grid discretization by using, for example, adaptive mesh refinement algorithms. We
think these improvements are necessary before attempting 2D device simulations.

APPENDIX A

Initial Conditions

The initial value of8 is a locally Maxwellian distribution at the temperatureTL ,

8(0, z, w,µ) = s(w)ND(z)e
−w
[
2π
∫ +∞

0
s(w)e−w dw

]−1

,

so that the initial value for the density is equal to doping.
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Numerical Values

We used the quantities

h-w = 0.063 eV TL = 300 K◦

α̃ = 0.5 (eV)−1 ρ0 = 2330 Kg m−3

ε0 = 8.85419· 10−12 F m−1 ε = 11.7 · ε0

m∗ = 0.32 ·m0 ul = 9040 ms−1

Dtk = 11.4 · 1010 eV m−1 Eac = 9 eV
K = Dtk2/(8π2ρ0ω) K0 = kBTL E2

ac/
(
4πh- u2

l ρ0
)

α = 2.43694 a = 11.438
β = 5.986 K∗ = 1.89405· 10−35,

nq = 0.0958036

wherem0 is the electron mass,ρ0 is the crystal density,Dtk is the optical coupling constant,
ul is the sound velocity, andEac is the deformation potential.

APPENDIX B

Poisson Equation

The exact solution of the Poisson equation is easily obtained by solving{
y′′ = g(x)
y(a) = ya, y(b) = yb.

We obtain

y(x) = ya + x − a

b− a

[
yb − ya −

∫ b

a
(b− t)g(t) dt

]
+
∫ x

a
(x − t)g(t) dt

and

y′(x) = 1

b− a

[
yb − ya −

∫ b

a
(b− t)g(t) dt

]
+
∫ x

a
g(t) dt.

The integrals are approximated using the trapezoidal rule.
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